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Abstract

We introduce a new method of Bayesian wavelet shrinkage for reconstructing a
signal when we observe a noisy version. Rather than making the usual assumption
that the wavelet coefficients of the signal are independent, we assume that they are
locally correlated in both location (time) and scale (frequency). This leads us to
prefer a novel prior structure to which is, unfortunately, analytically intractable.
We demonstrate that it is possible to draw exact, independent samples from the
posterior distribution using Coupling From The Past, making a simulation-based
approach possible.

1 Introduction

Consider the the standard nonparametric regression problem

yi = g(ti) + εi. (1)

where we observe a noisy version of an unknown function g at regularly spaced intervals
ti. The noise, εi is assumed to be independent and Normally distributed with zero mean
and variance σ2.

The standard wavelet-based approach to this problem is based on two properties of the
wavelet transform:

1. A large class of “well-behaved” functions can be sparsely represented in wavelet-
space.

2. The wavelet transform transforms independent, identically distributed noise to in-
dependent, identically distributed wavelet coefficients.

These two properties combine to suggest that a good way to remove noise from a
signal is to transform the signal into wavelet space, discard all of the small coefficients
(i.e. threshold), and perform the inverse transform. Since the true (noiseless) signal had a
sparse representation in wavelet space, the signal will be concentrated in a small number
of large coefficients. The noise, on the other hand, will still be spread evenly among the
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coefficients, so by discarding the small coefficients we must have discarded mostly noise
and will thus have found a better estimate of the true signal.

The problem then arises of what to choose as a threshold value. Many methods exist
for choosing the value of the threshold.

SureShrink (Donoho and Johnstone 1995) is a method for soft thresholding which min-
imises Stein’s unbiased estimate of risk (Stein 1981). A different threshold is chosen for
each level of the transform. The authors prove SureShrink is near-optimal in the way that
it adapts to the smoothness of the underlying function.

Cross-validation is a general method which has been used in a number of areas of
statistics. The principle is to split the data set into two pieces, a test set and a training
set. The training set is then used to to fit a model (in this case a function). The test
set is then used to assess the performance of the method. Nason (1996) suggests splitting
the data into the odd- and even-numbered observations (we shall call them the ‘odds’ and
the ‘evens’). First the evens are used to get an estimator for the function (using some
threshold t) and the sum of squared errors(SSE) between the estimate and the odds is
calculated. Secondly, the odds are used to get an estimator of the function using the same
threshold t, and the SSE between the new estimate and the evens is calculated. Finally,
the combined SSE is minimised numerically over values of t.

False discovery rates (Benjamini and Hochberg 1995) were originally introduced in the
field of multiple hypothesis testing, and control the expected proportion of false-positives.
Abramovich and Benjamini (1996) use this methodology to control the expected number
of coefficients which are not thresholded but should have been.

BayesThresh (Abramovich et al. 1998) uses a Bayesian hierarchical model, assuming
independent N(0, σ2) noise. They use a mixture of a point mass at 0 and a N(0, τ 2) density
as their prior on the population wavelet coefficients. The marginal posterior median of the
population wavelet coefficient is then used as their estimate of it. This gives a thresholding
rule, since the point mass at 0 in the prior gives non-zero probability that the population
wavelet coefficient will be zero.

We discuss an extension of BayesThresh in Section 2. An outline of the paper is as
follows. In Section 1.1 we introduce coupling from the past, which we use to simulate from
our posterior distribution. In Section 1.2 we discuss the area-interaction point process,
and a discrete version which we use as a prior distribution. In Section 1.3 we discuss
an extension of coupling from the past which will allow us to sample exactly from the
posterior distribution of our model. As already mentioned, we introduce an extension
of the method of Abramovich et al. in Section 2. In Section 3 we discuss a method for
generating independent samples from our posterior distribution using a variation of the
extension of coupling from the past introduced in Section 1.3. In Section 4 we present
a simulation study to compare our method with the others introduced in this section.
Section 5 presents some conclusions and discusses possible avenues for future work.
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1.1 Coupling from the past

It has long been considered a failing of Markov chain Monte Carlo (MCMC) that one can
rarely be absolutely sure that the Markov chain which is used for a given simulation has
converged to its stationary distribution. This means that it is not possible to generate
an unbiased sample1. It would be nice, therefore, to find a method for guaranteeing that
the chain has reached equilibrium, and thus that the resulting sample will be unbiased.
Coupling from the past (Propp and Wilson 1996) is a method for doing this.

The motivation behind coupling from the past (CFTP) is the following. Suppose that
it is desirable to sample from the stationary distribution of an ergodic Markov chain {Zt}
on some (finite) state space X with states 1, . . . , n. It is clear that if it were possible to go
back an infinite amount in time, start the chain running (in state Z−∞) and then return
to the present, the chain would (with probability 1) be in its stationary distribution when
one returned to the present (i.e. Z0 ∼ π, where π is the stationary distribution of the
chain). This is clearly not feasible in practice! Propp and Wilson (1996) showed that in
fact we can achieve the same goal by going back a finite (random) amount of time only.

Consider a finite state space with n states, and that we set not one, but n chains
{Z(1)

t }, . . . , {Z(n)
t } running at a fixed time −M in the past, where Z

(i)
−M = i for each chain

{Z(i)
t }. Now let all the chains be coupled Lindvall (1992) so that if Z

(i)
s = Z

(j)
s at any time

s then Z
(i)
t = Z

(j)
t ∀t ≥ s. Then if all the chains ended up in the same state j at time

zero (i.e. Z
(i)
0 = j ∀i ∈ X), we would know that whichever state a chain passing from

time minus infinity to zero was in at time −M , the chain would end up in state j at time
zero. Thus j must be a sample from the stationary distribution of the Markov chain in
question.

1.2 The Area-interaction point process

The area-interaction point process (Baddeley and van Lieshout 1995) is a spatial point
process capable of producing both moderately clustered and moderately ordered patterns
dependent on the value of its clustering parameter. It was introduced primarily to fill
a gap left by the Strauss point process (Strauss 1975), which can only produce ordered
point patterns (Kelly and Ripley 1976). The general area-interaction process is defined as
follows.

Let χ be some locally compact complete metric space and Rf be the space of all possible
configurations of points in χ. Let ν be a finite Borel regular measure on χ and Z : χ → K

be a myopically continuous function (where K is as usual the class of all compact subsets
of χ). Then the probability density of the general area-interaction process is given by

p(X) = αλN(X)γ−ν(U(X)) (2)

with respect to the unit rate Poisson process, where N(X) is the number of points in config-

uration X = {x1, . . . , xN(X)} ∈ Rf , α is a normalising constant and U(X) =
⋃N(X)

i=1 Z(xi).
In Section 2 we define the particular special case of this point process that we use.

Kendall (1998) extended CFTP to cover simulation of the area-interaction process
discussed in Section 1.2, which has an infinite state space. The method makes use of

1A biased sample is one whose distribution is different from the equilibrium distribution of the Markov
chain used to generate it, so that the estimate of any quantity depending on the equilibrium distribution
may be biased.
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a monotone coupling and stochastic domination. A coupling is monotone if whenever
Z

(i)
t ≥ Z

(j)
t then Z

(i)
t+k ≥ Z

(j)
t+k ∀k > 0. Given a monotone coupling and unique minimum

and maximum elements we need only simulate Markov chains starting in the maximum
and minimum states and check that these two have coalesced at time 0, since chains
starting in all other states would be sandwiched between these two. As there is no natural
maximum element for the area-interaction process, Kendall used a Poisson process which
stochastically dominates the area interaction process of interest to generate a maximum
process. More recently, Ambler (2002) extended these techniques to more general classes
of point processes. We describe this technique in the following section.

1.3 Perfect simulation of spatial point processes

For simplicity we restrict our discussion to spatial point processes on the unit square
[0, 1]× [0, 1] ⊆ R2. Suppose that we wish to sample from such a spatial point process with
density

p(X) = αλN(X)

m∏
i=1

fi(X),

where α, λ ∈ (0,∞) and fi : Rf → R are positive valued bounded monotonic functions.
Ambler (2002) shows that this is possible using the following algorithm.

Let D be a two-dimensional Poisson process with rate equal to

λ

m∏
i=1

max
X,{x}

(
fi(X ∪ {x})

fi(X)

)
, (3)

evolving over time according to a birth-death process with birth rate equal to (3) and unit
death rate. Let D(T ) be the configuration of points in process D at time T . For simplicity
of notation, constrain this function to be right-continuous, so that if there is a birth in
D at time T then D(T ) is the configuration which existed in D immediately prior to the
birth.

Now let U be a birth-death process which is started from an initial configuration equal
to that of D at some time in the past, and L be a birth-death process which is started
from an initial configuration equal to a thinned version of D, where points are accepted
with probability

m∏
i=1

min
X,{x}

(
fi (X ∪ {x})

fi(X)

)/
max
X,{x}

(
fi (X ∪ {x})

fi(X)

)

The processes U and L evolve through time as follows. If a point {u} is born in D at
time T then {u} is also born in U at time T with probability

m∏
i=1

max

{
fi[U(T ) ∪ {u}]

fi[U(T )]
,
fi[L(T ) ∪ {u}]

fi[L(T )]

}/
max
X,{x}

(
fi (X ∪ {x})

fi(X)

)
(4)

The point {u} is born in L at time time T with probability

m∏
i=1

min

{
fi[U(T ) ∪ {u}]

fi[U(T )]
,
fi[L(T ) ∪ {u}]

fi[L(T )]

}/
max
X,{x}

(
fi (X ∪ {x})

fi(X)

)
(5)
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If a point dies in D then if it existed in U or L then it dies there also.
Finally, generate D backwards in time from zero to some time −T and start U and

L there. Now run them forward to time zero. If U(0) = L(0) then the configuration
U(0) (or equivalently L(0)) is a sample from the required spatial point process. If not,
we must generate D further back in time and try again, keeping the probabilities used for
acceptance/rejection used in the first round.

We make use of a slightly modified version of this technique in Section 3 to sample
from our posterior distribution.

2 An Extension of Bayesian Wavelet Thresholding

We describe a novel thresholding procedure which uses a discrete area-interaction process
to model the correlation between neighbouring coefficients in the wavelet transform.

The principle behind our method is to model the discrete wavelet transform as a marked
lattice process. The ‘lattice’ is the natural binary tree which is commonly used to represent
the coefficients. A discretized area-interaction process is used as a prior on the distribu-
tion of non-zero coefficients. We also make use of the extra information gained by allowing
multiple points to exist at a single location, using the number of points as a shrinkage
factor. This is different from Abramovich et al. (1998), where the implicit assumption
was that the configuration was Binomial (i.e. a totally random configuration of non-zero
coefficients). The reason for thinking that the discretized area-interaction process would
make a better prior is that the wavelet transform provides time-frequency localisation.
This means that the effect of, for example, a discontinuity in the signal or in one of the
first few derivatives of the signal will produce significant coefficients of the wavelet trans-
form of the signal only in the coefficients close to the location at which the discontinuity
occurs. This fact means that the wavelet transform will have most of its coefficients clus-
tered around a few locations, thus leading to a clustered rather than uniformly random
distribution of coefficients. This can be seen clearly in Figure 1, which shows the discrete
wavelet transform of several common test functions represented in the natural binary tree
configuration.

More formally, we begin by allowing for the presence of noise by assuming that the true
wavelet coefficients are corrupted by Gaussian noise with zero mean and some variance σ2.
This gives the following likelihood:

d̂jk|djk ∼ N(djk, σ
2),

where d̂jk is the value of the noisy wavelet coefficient (the data) and djk is the value of the
true coefficient. We then place a prior on the value of the wavelet coefficients:

djk|J ∼ N(0, τ 2Jjk), (6)

where τ 2 is a constant and Jjk is the number of points at location (j, k) of a certain lattice
process J which exists on the natural binary tree commonly used to represent wavelet
coefficients. Thus the more points at a given location, the larger the variance of the prior
on djk, resulting in a higher probability of large values of djk. Finally, we place a hyperprior
on this lattice process:

P (J) = αλN(J)γ−m(U(J)) (7)
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Figure 1: Examples of the discrete wavelet transform of some test functions. There is clear
evidence of clustering in most of the graphs. The original functions are shown above their
discrete wavelet transform each time.
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Figure 2: The four plots give examples of what we used as Z(·) for four different example locations
showing how we dealt with boundaries. Grey boxes are Z(x) \ {x} for each example location x, while x
itself is shown as black.

with respect to the unit rate independent auto-Poisson process (Cressie 1993), where
J = (Jjk) is the configuration. If we take a value of γ greater than one this gives a
clustered configuration. Thus we would expect to see clusters of large values of djk if this
were a reasonable model — which is exactly what we do see in Figure 1.

This is an extension of the model of Abramovich et al. (1998), who assume that the
true wavelet coefficients are distributed as a mixture of a Normal distribution with zero
mean and variance dependent on the level of the coefficient, and a point mass at zero as
follows:

djk ∼ ζjkN(0, τ 2
j ) + (1− ζjk)δ(0),

where djk is the value of the kth coefficient at level j of the discrete wavelet transform
and τj is a positive constant. Notice that (6) includes a point mass at zero when Jjk = 0
(i.e. when there are no points alive at that location). Abramovich et al. (1998) also
assume that there is N(0, σ2) noise added to the true coefficients. This is equivalent to

our likelihood d̂jk|djk ∼ N(djk, σ
2).

Clearly a suitable interpretation of U(J) =
⋃

(j,k) Z(Jjk) in equation (7) is required.
Organising the wavelet coefficients into the traditional binary tree layout, one possibility
would be to use the parent, children and immediate sibling and cousin of a coefficient
as Z(x). Another would be to use a variation on this taking into account the length of
support of the wavelet used. Figure 2 shows the scheme we used, which we feel captures
the localisation of both time and frequency effects well.We decided to use the parent,
the coefficient on the parent’s level of the transform which is next-nearest to x, the two
adjacent coefficients on the level of x, the two children and the coefficients adjacent to
them, making a total of nine coefficients (including x itself). Figure 2 also shows how we
dealt with boundaries: we assume that the signal we are examining is periodic, making it
natural to have periodic boundary conditions horizontally. If Z(x) overlaps with a vertical
boundary we simply discard those parts which have no locations associated with them.
The simple counting measure used has m(K(x)) = 9 unless x is in the bottom row or one
of the top two rows.
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The log posterior for our model is

log f(J|d̂) = log α + N(J) log λ−m(U(J)) log γ +
∞∑
i=0

∑
Jjk=i

log fi(d̂jk), (8)

where fi(x) is the Gaussian density with zero mean and variance iτ 2.
Clearly this is not an ordinary area-interaction process. We now describe an application

of the method of Ambler (2002) which allows us to sample from this density.

3 Exact Sampling from the posterior

Although the expression in equation (8) may look like a rather complicated density it
turns out that the powerful method of it can be simulated perfectly using a rather simple
extension of the procedure for simulating the area-interaction process.

We make use of a spatial birth-death process like those introduced by Preston (1976)
and used to sample exactly from spatial point processes in Section 1.3. Since equation
(8) is a product of positive bounded functions from the configuration space into R the
methods introduced in Section 1.3 may be applied. We modify the notation slightly in
this section, using Jmax and Jmin to refer to the upper and lower processes respectively.
These were called U and L in Section 1.3. We then use Jmax

x and Jmin
x to refer to the

maximum and minimum processes at location x. Taking advantage of the lattice structure,
the dominating process D which we use actually has a different rate at each location, rather
than being constant as described in Section 1.3. See Ambler (2002) Chapter 5 for some
other examples of this kind of dominating process. The rate is given by

λdom
jk = λed̂2

jkτ2/2σ2(τ2+σ2) (9)

at each location (j, k) on the lattice. The lower process is then started as a thinned version
of D. Points are accepted with probability

P (x) = γ−M(χ)

(
σ2

τ 2 + σ2

)1/2

× exp

(
− d̂2

xτ
2

2σ2(τ 2 + σ2)

)
,

where M(χ) = maxχ(m(K(x))).
The upper and lower processes are then evolved through time, accepting points as

described in Section 1.3 with probability

γ−m(K(x)\U(Jmax))

(
τ 2Jmax

x + σ2

τ 2(Jmax
x + 1) + σ2

)1/2

× exp

(
− d̂2

xτ
2

2

τ 2Jmin
x (τ 2(Jmin

x + 1) + 2σ2)

σ2(τ 2 + σ2)(τ 2Jmin
x + σ2)(τ 2(Jmin

x + 1) + σ2)

)

for the upper process and

γ−m(K(x)\U(Jmax))

(
τ 2Jmin

x + σ2

τ 2(Jmin
x + 1) + σ2

)1/2

× exp

(
− d̂2

xτ
2

2

τ 2Jmax
x (τ 2(Jmax

x + 1) + 2σ2)

σ2(τ 2 + σ2)(τ 2Jmax
x + σ2)(τ 2(Jmax

x + 1) + σ2)

)

for the lower process. The remainder of the algorithm carries over in the obvious way.
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3.1 Using the Generated Samples

Although d was integrated out for simulation reasons in Section 2 it is, naturally, the
quantity of interest. Having simulated realisations of J|d̂ we then generate d|J, d̂ for each

realisation of J generated in the first step. The sample median of d|J, d̂ gives an estimate
for d, as required. The median is used instead of the mean as this gives a thresholding
rule (defined by Abramovich et al. (1998) as a rule giving p(djk|d̂) > 0).

We calculate f(d|J, d̂) using logarithms for ease of notation. Assuming that Jjk 6= 0
we find

log f(djk|d̂jk, Jjk 6= 0) = log f(djk) + log f(d̂jk|djk, (j, k) ∈ J) + C

=
−d2

jk

2τ 2Jjk

+
−(d̂jk − djk)

2

2σ2
+ C1

= −
(σ2 + τ 2Jjk)

(
djk − τ2Jjkd̂jk

σ2+τ2Jjk

)2

2σ2τ 2Jjk

+ C2

where C, C1 and C2 are constants. Thus

f(djk|d̂jk, Jjk 6= 0) ∼ N

(
τ 2Jjkd̂jk

σ2 + τ 2Jjk

,
σ2τ 2Jjk

σ2 + τ 2Jjk

)
.

When Jjk = 0 we clearly have f(djk|Jjk, d̂jk) = 0.

4 Simulation Study

We now present a more careful simulation study of the performance of our estimator rela-
tive to several established Wavelet-based estimators. Similar to the study of Abramovich
et al. (1998), we investigate the performance of our method on the four standard test func-
tions of Donoho and Johnstone (1994, 1995), namely “Blocks”, “Bumps”, “Doppler” and
“Heavisine”. These test functions are used because they exhibit different kinds behaviour
typical of signals arising in a variety of applications.

The test functions were simulated at 256 points equally spaced on the unit interval. The
test signals were centred and scaled so as to have mean value 0 and standard deviation 1.
We then added independent N(0, σ2) noise to each of the functions, where σ was taken as
1/10, 1/7 and 1/3. The noise levels then correspond to root signal-to-noise ratios (RSNR)
of 10, 7 and 3 respectively. We performed 25 replications. For our method, we simulated
25 independent draws from the posterior distribution of the djk’s and used the sample
median as our estimate, as this gives a thresholding rule. For each of the runs, σ was set
to the standard deviation of the noise we added, τ was set to 1.0, λ was set to 0.05 and γ
was set to 3.0.

The values of parameters σ and τ were set to the true values of the standard deviation
of the noise and the signal, respectively. In practice it will be necessary to develop some
method for estimating these values. The value of λ was chosen to be 0.05 because it was
felt that not many of the coefficients would be significant. The value of γ was chosen based
on small trials for the heavisine and jumpsine datasets (not shown).
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Method RSNR AMSEs for the following test functions:
Blocks Bumps Doppler Heavisine

10 0.0025 0.0084 0.0049 0.0032
LatticeBayesThresh 7 0.0056 0.0185 0.0087 0.0052

3 0.0534 0.1023 0.0448 0.0149
10 0.0344 0.1651 0.0167 0.0035

BayesThresh 7 0.0414 0.1716 0.0225 0.0057
3 0.0860 0.2015 0.0448 0.0140
10 0.0055 0.0392 0.0112 0.0030

Cross-validation 7 0.0096 0.0441 0.0135 0.0054
3 0.0452 0.0914 0.0375 0.0057
10 0.0049 0.0131 0.0054 0.0065

SureShrink 7 0.0098 0.0253 0.0099 0.0093
3 0.0482 0.0973 0.0399 0.0147
10 0.0159 0.0449 0.0144 0.0064

False discovery rate 7 0.0294 0.0758 0.0253 0.0093
3 0.1230 0.2324 0.0861 0.0148

Table 1: Average mean-square errors for our estimator (labelled LatticeBayesThresh), ordi-
nary BayesThresh, cross-validation, SureShrink and false discovery rate estimators for four test
functions for two values of the root signal-to-noise ratio. Averages are based on 25 replicates.

We compare our method with several established wavelet-based estimators for recon-
structing noisy signals: ordinary BayesThresh (Abramovich et al. 1998), SureShrink
(Donoho and Johnstone 1994), cross-validation (Nason 1996) and the false discovery rate
(Abramovich and Benjamini 1996). For test signals “Bumps”, “Doppler” and “Heavisine”
we used Daubechies least asymmetric wavelet of order 10 (Daubechies 1992). For “Blocks”
we used the Haar wavelet, as the original signal was piecewise constant. The analysis was
carried out using the freely available R statistical package. The WaveThresh package (Na-
son 1993) was used to perform the discrete wavelet transform and also to compute the
BayesThresh, SureShrink, cross-validation and false discovery rate estimators.

The goodness of fit of each estimator was measured by its average mean-square error
(AMSE) over the 25 replications. Table 1 presents the results. It is clear that our estimator
performs extremely well with respect to the other estimators when the signal-to-noise ratio
is large, but struggles when there is a small signal-to-noise ratio. This may be due to the
fact that it was necessary to make some approximations in constructing the sampler. These
are discussed in the appendix.

5 Conclusions and future work

We have introduced a procedure for Bayesian wavelet thresholding which uses the natu-
rally clustered nature of the wavelet transform when deciding how much weight to give
coefficient values. We have demonstrated that this procedure performs well compared to
existing methods, though the implementation suffered from some problems which made
exact computation infeasible. The performance seems good for moderate and low noise
levels, though it was a little disappointing for higher noise levels.
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One possible area for future work would be to replace equation (6) with

djk|J ∼ N(0, τ 2(Jjk)
z),

where z would be a further parameter. This would modify the number of points which
are likely to be alive at any given location and thus also modify the tail behaviour of the
prior. The idea behind this suggestion is that when we know that the behaviour of the
data is either heavy or light tailed, we could adjust z to compensate. This could possibly
also help speed up convergence by reducing the number of points at locations with large
values of djk. As inclusion of this extra parameter requires only minor modifications, the
implementation discussed actually includes this option. The results presented in Section 4
were generated by simply setting z = 1.

A second possible area for future work would be to develop some automatic methods for
choosing the parameter values, perhaps using the method of maximum pseudo-likelihood
(Besag 1974; Besag 1975; Besag 1977).

Software implementing the work described in this paper is available on request from
the first author.
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A Dealing with large and small rates

When attempting to implement the algorithm in Section 3 we encountered problems due
to extremely high birth rates in the dominating process. Recall from Equation 9 that if the
maximum data value djk is twenty times larger in magnitude than the standard deviation
of the noise (a not uncommon event for reasonable noise levels) then we have

λdom = λe400σ2τ2/2σ2(τ2+σ2)

= λe200τ2/(τ2+σ2).

Now unless τ is significantly smaller than σ, this will result in enormous birth rates. We
are clearly not going to be able to simulate this efficiently.

To get around this problem we reasoned that the chances of there being no live points at
a location whose data value is large (resulting in a value of λdom larger than e4) is sufficiently
small that for the purposes of calculating m((x⊕G)\ (Y (−M, u)⊕G)) for nearby locations
it could be assumed that the number of points alive was strictly positive. This allows us
to simulate the process accurately for the locations of interest and provide a reasonable
level of discrimination in a more reasonable time frame.

Unfortunately, the problems do not stop there. Recall from Section 3.1 that

djk|Jjk, d̂jk ∼ N

(
τ 2Jjkd̂jk

σ2 + τ 2Jjk

,
σ2τ 2Jjk

σ2 + τ 2Jjk

)

so that we need values of Jjk for each location (j, k) in the configuration. Unfortunately,
we no longer know the value of Jjk for those locations which have large values of djk.

To get around this problem we first notice that

τ 2Jjkd̂jk

σ2 + τ 2Jjk

−−→
Jjk→∞

d̂jk
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monotonically from below, and that

τ 2Jjkσ
2

σ2 + τ 2Jjk

−−→
Jjk→∞

σ2,

also monotonically from below. Since σ is typically small, convergence is very fast indeed.
Taking τ = σ as an example we see that even when Jjk = 5 we have

τ 2Jjkd̂jk

σ2 + τ 2Jjk

=
5

6
d̂jk

and
τ 2Jjkσ

2

σ2 + τ 2Jjk

=
5

6
σ2.

We see that we are already within 1
6

of the limit. Convergence is even faster for larger
values of τ .

We also recall that the dominating process gives an upper bound for the value of Jjk

at every location. Thus a good estimate for djk would be gained by taking the value of Jjk

in the dominating process for those points where we do not know the exact value. This
is a good solution but is unnecessary in some cases, as sometimes the value of λdom is so
large that there is little advantage in using this value. Thus for exceptionally large values
of λdom we simply use N(d̂jk, σ

2) numbers as our estimate of djk.
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